Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.
نویسندگان
چکیده
Amino-terminal acetylation is a ubiquitous modification in eukaryotes that is involved in a growing number of biological processes. There are six known eukaryotic amino-terminal acetyltransferases (NATs), which are differentiated from one another on the basis of substrate specificity. To date, two eukaryotic NATs, NatA and NatE, have been structurally characterized, of which NatA will acetylate the α-amino group of a number of nonmethionine amino-terminal residue substrates such as serine; NatE requires a substrate amino-terminal methionine residue for activity. Interestingly, these two NATs use different catalytic strategies to accomplish substrate-specific acetylation. In archaea, where this modification is less prevalent, only one NAT enzyme has been identified. Surprisingly, this enzyme is able to acetylate NatA and NatE substrates and is believed to represent an ancestral NAT variant from which the eukaryotic NAT machinery evolved. To gain insight into the evolution of NAT enzymes, we determined the X-ray crystal structure of an archaeal NAT from Sulfolobus solfataricus (ssNAT). Through the use of mutagenesis and kinetic analysis, we show that the active site of ssNAT represents a hybrid of the NatA and NatE active sites, and we highlight features of this protein that allow it to facilitate catalysis of distinct substrates through different catalytic strategies, which is a unique characteristic of this enzyme. Taken together, the structural and biochemical data presented here have implications for the evolution of eukaryotic NAT enzymes and the substrate specificities therein.
منابع مشابه
C-Terminal Propeptide of BKA has a Protease Sensitive Structure Without any Inhibitory Effect on BKA
In our previous study, we compared the two α-amylase enzymes from Bacillus sp.KR8104, BKA∆(N44) and BKA∆(N44C193) which is the secreted form of it. The results indicated that the presence of 193 amino acids propeptide in the C-terminal of BKA∆(N44) changed its enzymatic parameters like an uncompetitive inhibitor in comparison to BKA∆(N44C193). In the present study, we cloned the DNA sequence of...
متن کاملThe COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity.
Arylamine N-acetyltransferases (NATs) are a homologous family of enzymes, which acetylate arylamines, arylhydroxylamines, and arylhydrazines by acetyl transfer from acetyl-coenzyme A (Ac-CoA) and are found in many organisms. NAT was first identified as the enzyme responsible for the inactivation of the anti-tubercular drug isoniazid in humans. The three-dimensional structure of NAT from Salmone...
متن کاملIdentified Hybrid tRNA Structure Genes in Archaeal Genome
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...
متن کاملAbsence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms
Protein N-terminal acetylation is an ancient and ubiquitous co-translational modification catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). Prokaryotes have at least 3 NATs, whereas humans have six distinct but highly conserved NATs, suggesting an increase in regulatory complexity of this modification during eukaryotic evolution. Despite this, and against our initi...
متن کاملStructure of Mesorhizobium loti arylamine N-acetyltransferase 1.
The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 36 شماره
صفحات -
تاریخ انتشار 2013